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Abstract

Hydrodynamic (Landau) instability in combus-

tion is typically associated with the onset of wrin-

kling of a flame surface, corresponding to the for-

mation of steady cellular structures as the stabil-

ity threshold is crossed. In the context of liquid-

propellant combustion, such instability has recently
been shown to occur for critical values of the pres-

sure sensitivity of the burning rate and the distur-

bance wavenumber, significantly generalizing previ-
ous classical results for this problem that assumed

a constant normal burning rate. Additionally, how-

ever, a pulsating form of hydrodynamic instability
has been shown to occur as well, corresponding to

the onset of temporal oscillations in the location of

the liquid/gas interface. In the present work, we con-
sider the realistic influence of a nonzero temperature

sensitivity in the local burning rate on both types of

stability thresholds. It is found that for sufficiently
small values of this parameter, there exists a sta-

ble range of pressure sensitivities for steady, planar

burning such that the classical cellular form of hy-
drodynamic instability and the more recent pulsat-

ing form of hydrodynamic instability can each occur
as the corresponding stability threshold is crossed.

For larger thermal sensitivities, however, the pulsat-

ing stability boundary evolves into a C-shaped curve
in the disturbance-wavenumber/pressure-sensitivity

plane, indicating loss of stability to pulsating pertur-
bations for all sufficiently large disturbance wave-

lengths. It is thus concluded, based on characteris-

tic parameter values, that an equally likely form of

hydrodynamic instability in liquid-propellant com-

bustion is of a nonsteady, long-wave nature, distinct

from the steady, cellular form originally predicted by
Landau.

*This paper is declared a work of the U.S. Government and

is not subject to copyright protection in the United States.

1. Introduction

The notion of hydrodynamic instat)ility in com-

bustion originated with Landau's seminal study of

premixed flame propagation.; In that work, it was

postulated that a flame could be represented by a

surface of discontinuity, with an appropriate density

jump across the flame surface, and the normal equa-

tions of hydrodynamics governing the flow on either

side of the flame surface. Assuming that this surface

propagated normal to itself with constant speed, it

was then determined through a straightforward lin-

ear stability analysis that a premixed gaseous flame

was intrinsically unstable to steady (cellular) distur-

bances whenever, as is generally the case, the density
on the burned side of the front was less than that of

the unburned mixture. Since this result is at vari-

ance with experimental observations of steady, pla-

nar laboratory flames, it has sparked numerous other

theoretical investigations that have sought to resolve

this paradox, through both the inclusion of addi-
tional effects and the analysis of less phenomenolog-

ical combustion models. Today, this specific form

of hydrodynamic instability, generally referred to as

Landau instability, plays a central role in the study

of flame/flow interactions. Though Landau's anal-

ysis essentially collapsed all thermal effects to the

change in density across the front, Landau insta-

bility is nonetheless implicitly associated with the

thermal expansion of the gas arising from the heat

release during combustion. Indeed, this instabil-

ity persists even when the entire flame structure is

resolved, 2,3 although it is now recognized as a pre-

dominantly long-wave cellular instability that is sub-

ject to various stabilizing influences for disturbances

corresponding to larger wavenumbers.
A related problem briefly addressed at the end

of Landau's original study (for which a more stan-
dard and less controversial type of result was ob-

tained), and the one of interest here, was a modest
modification of the flame-propagation problem just

described. In this modified problem, the unburned



mixturew_ takento bealiquidpropellantwhiletile
burnedregionagainconsistedof gaseousproducts.
Thephysicalexistenceof a liquid/gasinterfaceled
to the inclusionof additionalphysicsin themodel,
namelysurfacetensionat theinterfaceandtheinflu-
enceofgravitationalacceleration(downwardpropa-
gationwasassumed).Asaresult,andincontrastto
strictlygaseousflamepropagation,astabilitycrite-
rionwasderivedsuchthat the liquid/gasinterface
waseitherhydrodynamicallystableor unstablein
the Landau(cellular)sensedependingonwhether
theproductofthegravitationalaccelerationandthe
coefficientofsurfacetensionwasgreaterorlessthan
a criticalvalue.Thisresultwaslaterextendedby
Levich,4whoconsideredtheeffectsof(liquid)viscos-
ity in lieuof surfacetensionandobtained a similar

result for the product of the gravitational acceler-

ation and the viscosity of the liquid. These classi-

cal models of liquid-propellant combustion, despite

their relative simplicity, have long served as seminal

examples that correctly describe the onset of (cellu-

lar) hydrodynamic instability in reactive systems.
Although the assumption of a thin reaction re-

gion remains a frequently valid and useful simpli-

fication in many combustion studies, the classical

assumption of a constant normal burning rate has

long been regarded as a probable oversimplification

when applied to the problem of combustion insta-

bility. Early attempts at modification began with

the phenomenological assumption of a linear rela-

tionship between the burning rate and the flame

curvature, 5 while more modern approaches have em-

ployed sophisticated asymptotic methods to analyze

the flame structure and to derive formal expressions

for the burning rate as a function of local conditions

at the combustion front, for both gaseous and con-

densed.combustion waves. 2,3,s3" In propellant com-

bustion, on the other hand, it has long been cus-

tomary to experimentally measure the pressure re-

sponse, or pressure sensitivity, of the burning rate, as

well as (to a lesser extent), its temperature sensitiv-
ity. Although asymptotic models of propellant com-
bustion that resolve the combustion-wave structure

can be developed under various approximations, s-l°

it remains true nonetheless that the direct assump-

tion of a combustion surface that propagates accord-

ing to a prescribed burning-rate law, such as a phe-

nomenological law based on experimental observa-

tions, allows one to circumvent the intricacies of the

combustion region and to impose fewer restrictive

assumptions on the hydrodynamic model in the un-
burned and burned regions.

Accordingly, for the case of liquid-propellant

combustion, the classical Landau/Levich hydrody-

namic models may be combined and extended to ac-

count for a dynamic dependence, absent in the orig-

inal formulations, of the instantaneous burning rate

on the local pressure and temperature fields. 11A2

Although exact expressions for the neutral stabil-

ity boundaries in question can be obtained in spe-
cific limiting cases, more general results may be ob-

tained by exploiting the realistic smallness of the

gas-to-liquid density ratio p. Thus, neglecting ther-

mal coupling effects, an asymptotic analytical ex-

pression was derived for the cellular stability bound-

ary Ap(k), where Ap denotes the pressure sensitiv-

ity of the burning rate and k is the wavenumber
of the disturbance. 13 The results demonstrate ex-

plicitly the stabilizing effect of gravity on long-wave

disturbances, the stabilizing effect of viscosity (both

liquid and gas) and surface tension on short-wave

perturbations, and the instability associated with

intermediate wavenumbers for critical negative val-

ues of Ap. In the limiting case of weak gravity, it

was shown that hydrodynamic instability in liquid-

propellant combustion is a long-wave instability phe-

nomenon, whereas at normal gravity, this instability

is first manifested through 0(1) wavenumber distur-

bances. It was also demonstrated that, in general,

surface tension and the viscosity of both the liquid

and gas phases each produce comparable stabiliz-

ing effects in the large-wavenumber regime, thereby
providing important modifications to the previous

classical analyses in which one or more of these ef-

fects was neglected. For Ap = 0, the Landau/Levich
results are recovered from the new model in appro-

priate limiting cases, although, in the realistic limit

of small p, this corresponds to a hydrodynamically

unstable parameter regime. 1,4,13

In addition to the classical cellular form of hy-

drodynamic stability described thus far, there exists

in this extended model a pulsating form of hydrody-

namic instability corresponding to the loss of stabil-

ity of the steady, planar solution to time-dependent

perturbations. 14 This occurs for negative values of

the pressure-sensitivity parameter Ap, and is there-

fore absent from the original Landau/Levich models.
Nonetheless, its existence in the extended model re-

suits in a stable band of negative pressure sensitivi-

ties bounded above by the classical Landau type of

hydrodynamic instability, and below by the pulsat-

ing form of hydrodynamic instability just described.

A stable range of negative pressure sensitivities is

applicable, for example, to certain types of hydroxy-

lammonium nitrate (HAN)-based liquid propellants

at low pressures for which nonsteady modes of com-
bustion have been observed, is While it is possible

that such nonsteady combustion may correspond to



secondaryandhigher-orderbifurcationsabovethe
cellularboundary,16it mayalsobeamanifestation
of the pulsatingformof hydrodynamicinstability
justdescribed.

In thepresentwork,ls'mweexploretheeffects
of incorporatinga nonzerotemperaturesensitivity
intoourpreviousasymptoticanalysesperformedin
the limit of smallgas-to-liquiddensityratios.13,14
Thisentailsa couplingof the energyequationfor
temperatureto the previouspurelyhydrodynamic
problem,andleadsto a significantmodificationto
thepulsatingboundarysuchthat, for sufficiently
largevaluesof thetemperature-sensitivityparame-
ter,liquid-propellantcombustioncanbecomeintrin-
sicallyunstableto thisnewerformof hydrodynamic
instability.

2. The Mathematical Model and its Basic Solution

The extended mathematical model referred to

above was described previously, 13 but is briefly sum-

marized here for completeness. In particular, it is
assumed, as in the classical models, that there is

no distributed reaction in either the liquid or gas

phases, but that there exists either a pyrolysis re-

action or an exothermic decomposition at the liq-

uid/gas interface that depends on local conditions
there. For simplicity, it is assumed that within the

liquid and gas phases separately, the various physi-

cal properties are constants, with appropriate jumps

in these quantities across the phase boundary.
The nondimensional location of the downward-

propagating liquid/gas interface, which is a function

of space and time, is denoted by x3 = (_s(xl, x2, t),

where xa is the vertical coordinate and the adopted
coordinate system is fixed with respect to the sta-

tionary liquid at xa = -c_. Then, in the mov-

ing coordinate system x = xl, y = x2, z = x3 -

_(xl,x2, t), in terms of which the liquid/gas inter-
face always lies at z = 0, the complete formulation of

the problem is given by conservation of mass, energy

and momentum within each phase as

V-v=0, z#0, (1)

Ot Ot Oz

Ov 0_ _ Ov
0-7- o--/-o-7+ (v. v)v = -1)

(3)

_ p-X APrg ' '

where v, e and p denote velocity, temperature and

pressure, respectively, Prt and Pr 9 denote the liquid

and gas-phase Prandtl numbers, p, )k and c (used be-
low) are the gas-to-liquid density, thermal diffusiv-

ity and heat-capacity ratios, and Fr is the Froude
number. These nondimensional variables have been

defined in terms of their dimensional counterparts

(denoted by tildes) as
t

¢-¢.
v p= ,

u (4)

-- , --_ -"="-- _ X i _-- _ ,

where 0 is the reference propagation speed of the

interface for the case of steady, planar deflagration.

The nondimensional parameters, some of which first

appear below in the conditions at the gas/liquid in-
terface, have been defined as

p= Pg"W-,

Pt

eg 0 3
c= _-z-, Fr = --=-_ , ._ = _ (5)

=

where 7_,, is the unburned (liquid) temperature at

z = -oc ancl 2r_ is the adiabatic burned (gas) tem-

perature at z = +co, _ is the coefficient of sur-

face tension for the liquid surface, and kL and _g are
the liquid and gas-phase kinematic viscosities. We

note that the inverse Froude number Fr -1 repre-

sents the nondimensional gravitational acceleration

and that p_Prg = #Prl, where p =/5_//2z is the gas-
to-liquid viscosity ratio. The nondimensional mass

burning rate appearing in Eq. (9) below is defined by

A(pl=-0+,@[==0) -- fI(pI_,=$+,T[_._=4,.)/p_(], and
is assumed to be functionally _ependent on the local

pressure and temperature at the liquid/gas interface.
By definition, A = 1 for the case of steady, planar

burning, but perturbations in pressure and/or tem-

perature result in corresponding perturbations in the

local mass burning rate.

Equations (1) - (3) are subject to the boundary
conditions

v=O, 0=0 at z=-oo,

0=1 at z=+_, _],=0- =Of,=0+

and appropriate jump and continuity conditions at

the liquid/gas interface. The latter consist of con-

tinuity of the transverse velocity components (no-

slip),
fi_ x v_ = fi_ x v+, (7)



wherev± = v]_=0_ , conservation of (normal) mass

flUX,

_,.(v_ - pv+) = (1 - p) ( ')-gT' (8)

the mass burning rate (pyrolysis) law,

S _ 8@_
_,.v_ - ( _)-6T = A(pl_=o+,el,=o), (0)

conservation of flux of the normal and transverse

components of momentum,

Plz=O- - Plz=O+

= e,,.[p,,+(e,,.,,+) - v_ if,,. v_)
-p_Prge+ • fis + Pr_e_ • fis]

+ _,.(v_ - pv+)S(¢,)_"

[1+ ( 51 o2 ,

(10)

n,x [pv+(_.,,-v+) - v_ (__,.v_)

+(v_- (11)
= hsx(p_Prge+ "fis - Prte_ • fis),

and conservation of heat flux

_.s•(cpkVe[,=o,-- Vel,=o-)

= _,. [(cpv+- v_)el,=o + a(_,pv+ - _-)]
a@,

+ [(1 - cp)el,=o + a(1- o,p)]s(¢,)-_-,
(12)

where a = c/(1 - au), e is the rate-of-strain tensor

(e± = elz=O_ ), 7 is the surface-tension coefficient,

a_ is the unburned-to-burned temperature ratio, and

S(@s) and the unit normal fis are defined as

s(_,) = [1 + (a_,lO=)_+ (O¢,lay) =]-m, (13)
_, = (-O_,la=, -a_,/ay, 1)s(_,).

Here, the factor multiplying 7 in Eq. (10) is the

curvature -V • fis of the liquid/gas interface in the

moving coordinate system, and the corresponding

expressions for both the gradient operator V and
the Laplacian _72 in this system are given by

O a_s (9 0 a_, (9 (9) (14)V = Ox Oz (gz' Oy Oy (gz'-_z '

V2 a2 (92 [ ( (9@,= ax----_+ _-'_j2 + I + k'-_--z ]

-2 a(I_ 02 2(9_o (92
ax (gzaz (gy OyOz

(15)

However, the vector v still denotes the velocity with

respect to the (xx, x2, x3) coordinate system.
We observe that the thermal and hydrodynamic

fields are coupled through the temperature depen-

dence of the mass burning rate A appearing in Eq.

(9). When A is assumed to depend on pressure only,

the strictly hydrodynamic problem for p, v and (_s

can be analyzed separately [13, 14]. In the present
work, we wish to focus on this more extended cou-

pling to determine how the hydrodynamic stability
boundaries are modified when the local burning rate

depends on temperature as well. In connection with

this we remark that although the mass burning rate

A may be typically decomposed as

A(pl,_-o+,el,:o)

= A(pl,-o+, el,=o) exp [.N(1 -- a,,)(el,:o - 1)1- t ,,,,+ J'
(16)

where _i is a rate coefficient and N = E/R°Ya is the

nondimensional activation energy (E), this more ex-

plicit representation will not be needed in the stabil-

ity analysis that follows. Instead, our (linear) stabil-
ity results may be expressed in terms of the pressure

and temperature sensitivities, defined as

A_ = aA/(gp[e=_,;=o ,

Ao = aA/(ge[e=,,v=o = N(I - a,) + Ao, (17)

respectively. However, we note that if the nondi-

mensiona] activation energy is large, then the last of

Eqs. (17) implies that Ae would likely be larger in

magnitude than Ap, a fact that will play a role in the

relative scalings introduced for Av and Ae below.

A nontrivial basic solution to the above prob-

lem, corresponding to the special case of a steady,

planar deflagration, is given by

@o = _t, p°(z) = { -Fr-Yz + p-l - l' z < O-pFr-_z, z > O,

v °=(O,O,v°), vo=_O, z<O
p-l _ l, z > O,k

z<O

(18)



The remainder of the paper is devoted to a linear

stability analysis of this solution.

3. The Complete Linear Stability Problem

Before proceeding with any further approxima-

t-ions, we determine in a straightforward fashion the

linear stability problem and the corresponding dis-

persion relation (in the form of a system of alge-

braic equations) that govern the behavior of har-

monic perturbations about the basic solution (18).

In particular, in terms of the perturbation quanti-

ties ¢,(=, y, t) = _,(x, y, z, t) - ¢°(t), u(x, y, z, t) =

v(x, V, z, t) - v°(z), ¢(x, V, z,t) = p(_, V, =, t) - p°(z)

and O(x, y, z, t) = 0 - O°(z) - ¢sdO°/dz, the prob-

lem obtained when Eqs. (1) - (3), (6) - (12) are

linearized about the basic solution (18) is given by

011I OU2 OU 3

O----_-+--_-y +--_-z =0, z#0, (19)

{lo} au a,.,_+Oz =

0(_x O_ 1}Fr_10¢, Oz )

+ tpAPrg}kOx 2 +-fifty2 + Oz 2], z <0,

1}__. +00 e t0}
1 (o5e 020 o2e 

zXO,

(20)

(21)

u=O, 0=0 at z=-oo,
(22)

0=0 at z = +oo , Olz=o+ - OJt=o- = ¢s,
o

Ullt=o- -ull==o+ -- (,o-1 - 1) 0¢' (23)
ax '

'-'_l,=o- - "=It=o+ = (p-' - 1)-_-y', (24)

, ,::1¢,,u_l,=o- - p_l,=o+ = (I- p_-_- (25)

0¢,
ua[:=o- - 0---7 = Av¢lt=°+ + AeOlt=o+, (26)

¢1==o-- tit=o+ = (2 - P)"al,=o+- ual,=o-

or, o_aJ Oua+ zt'rz-_-z t=0- - 2pAPrg (27)Oqz t=O+

, a¢, /02¢, 02¢,,_
- (1- m-E. - _t-b-_-z_+ or= ,,'

z=O+ OqX z=O+

O:_ ==0- ]

he,
= (p-, _ i)_7 + U,lz=o+ _ ",t:=o-,

\ Oz _=o+ + Oy ,=o+/

- Prz \ oz it=o- + Oy z=o-)

= (p-1_ + -

(28)

(29)

°0Iaz t=o+ _ _=o- - cOlt=o+ +Olt=o-

.0¢,
= @ualz=o_- - (1 + a)uaI==o_ + [1 + e(1-p) l _- ,

(30)
where e _= c(I - au) -1.

Nontrivial harmonic solutions for ¢s, u and _,
proportional to e i_'t+ik*=+ik2y, that satisfy Eqs. (19)

- (21) and the boundary/boundedness conditions at
z = 4-oo are given by

and

¢s = e iwt+iklx+ikay (31)

= giwt+iklx+ikay I blekZ -- FT-1

[ b2e -kz _ pFr -1 '
(32)

ul = e i'_t+ik'x+ik2y I baeqt - ikl(i_o + k)-Ible kt
(b4e rz iki(iwp- k)-lbae -k=,

(33)

= d_+,k,=+ik_y [ bse_=- ik2(i_ + k)-Ible _t
U2

L b6e _ ik2(iwp- k)-_b2e -_=,

(34)

= e i°at+ik_z+ik_y I breq* - k(i_o + k)-lble k`
U3

[ bse _ + k(iwp- k)-Ib2e -_ ,

(35)
0 =- e iwt+iklz+ikzy

{ bge m - [i_ + k" - q(q + 1)]-Ibre (q+l)"
• +k[(iw) _-- k2]-ibie(_+l):

blo esz ,

(36)
for z < 0, where we have normalized the above so-

lution by setting the coefficient of the harmonic de-

pendence of ¢, to unity. Here, the signs of kl and

k2 may be either positive or negative and we have

employed the definition k = _, and p, q, r
and s are defined as

2p = 1 + X/1 + 4(iw + k2), (37)



2Prl q = 1 + _/1 + 4Prl(iw + Pr_ k2), (38)

2#Prl r = 1 - x/1 + 4#Prl(icep + #Prl k2), (39)

2p s = 1 - vii + 4p  (ice +  k2), (40)

where we have used the fact, noted below Eq. (5),

that p)_Prg = #Prl.
Substituting this solution into the interface con-

ditions (23) - (30) and using Eq. (19) for z < 0 yields

eleven conditions for the ten coefficients bl - blo and

the complex frequency (dispersion relation) iw(k).

In particular, these conditions are given by

iktb3 + ik2bs + qb7 = O, (41)

iktb4 + ik2b6 + rbs = 0, (42)

, ikl . 1 _l'_ikl
ba iceiklkbl-+ b4-1- _--_--__ _o2 : (_) , (43)

ik2 _-b ' ik2 , 1-1)ik: (44)

k pk (1 p) ce, (45)
b7 - -----_blice+ - pbs iwp---_b2 = -

57

k

ice + £bl-Apb2-Aeblo = iw-pFr-lAp, (46)

[1 +/-_+ k(2kPr,- 1)]bi

[ k
(2k#Prl + 2 - p)] b2 (47)- kl + iwp---_-k

+ (1 - 2Prz q)b7 - (2 - p - 2#Prl r)bs

= (1 - p)(Fr -1 - iw) + 7k 2,

.. ikl ,

(#Prt r - 1)b4 + (2k#Prl + i)_o2

+ ikl#Prl bs + (1 - Prl q)b3

.. ikl . (48)
+ (2kPrl - 1)_-_01 - iklPrt b7

=(_-l)ikl,

1 ik2(#Prlr 1)b6 + (2k#Prl + --b2
- ) iwp - k

+ ik2_Prl bs + (1 - Prl q)b5

.. ik2 . (49)
+ (2kPrl - t)_-_ol - ik2Prl b7

2 I 2 2 I
blo-b9+[ice+k -q(q+l)]- bT-k[(ice) -k ]- bl =1,

(50)

(1 - c + cp)_S)blo - pb9 - _pbs

+ ice+k2_q(q+l ) +1+ b7

k [k+l +l+_Jbl ,.= -£_Pkiw + k [ice - k i,,,v_- ,_b2

. = i + ice[1 + d(1 - P)]'

(5i)
While the above problem is linear in the coefficients

bl - bs, the relationship for iw is highly nonlinear.

Accordingly, we seek asymptotic solutions for the

neutral stability boundaries in the limit that the

gas-to-liquid density and viscosity ratios p and # are

small, as is Fr -I in the case of reduced gravity. We

shall also introduce appropriate scalings for the sen-

sitivity parameters Ap and Ao, where the limiting

results for Ao = 0 were derived previously [13, 14].

In particular, we introduce a bookkeeping parameter

e << 1 and consider the realistic parameter regime

)'g,_ 0(1) . (52)
p = p*e, # = # " e, Fr-l = [ g e _ O(e) ,

where the the upper (lower) choice for Fr -1 corre-

sponds to normal (reduced) gravity. We note that

based on characteristic densities for liquid propel-

lants and product gases at elevated temperatures, a
realistic value for e is on the order of 10 -3 or 10 -4.

In this parameter regime, it was seen that the ap-

propriate scaling for Ap to describe the neutral sta-

bility region was Ap = A;e, whereas the appropri-
ate scale that describes the fully-developed effects of

thermal coupling turns out to be Ao = A_d/4, as
shown in Section 6 below. Thus, we observe that

Ao/Ap ,., O(e -3/4) > 175, which is at least several

times as large as typical values of the nondimen-

sional activation energy N, but still consistent with
the last of Eqs. (17). However, as shown in Section

7, the first significant effects of thermal coupling are •

in fact felt on an intermediate scale Ao "" O(el/2),

in which case Ao/Ap _.. O(e -1/2) > 30, which is

a quite typical value for N. Thus, the parame-
ter regime of interest for describing modifications to

the hydrodynamic stability boundaries arising from

temperature-sensitivity effects coincides with realis-

tic values of the sensitivity coefficients.

4.. The Invi.scid Limit

Although both liquid and gas-phase viscous ef-

fects were shown to be generally comparable to those
due to surface tension when thermal coupling was

neglected, la'14 the qualitative nature of the cellu-

lar boundary remains preserved in the zero-viscosity



limit, asdoestheexistenceofthepulsatingbound-
arc. Accordingly,weshall,for simplicity,mainly
considertheeffectsof thermalsensitivityonhydro-
dynamicstabilityin theinviscidlimit, reservingthe
detailedconsiderationofthermalcouplingin theal-
gebraicallymoreinvolvedviscouscasefor a future
study}9In particular,beforeintroducingthescal-
ingsindicatedabove,wefirst setPrl = Pr 9 = O.

Consequently, since q --* oe according to Eq. (38),

we set b3 = bs = b7 =0inEqs. (33)- (35), and

observing that Eqs. (48) - (49) then reduce to the

no-slip conditions (43) (44), we thus eliminate Eqs.

(41), (48) and (49) from the above set. Using the

fact that r --* -iwp, the solution for the remaining
coefficients in terms of iw is given by

58 =

k

2p(iwp - k)(iwp + k)

•{(1 - p)2[(iw)2p+ k2]

+ p(1 - p2)Fr-lk + p(1 + p)Tk3},

(53)

i_ + k [(i_ + k)(1- p)k- p(_p - k)bs]
bi - (1 + p)k _

(54)
iwp- k

p(1+ p)k2[(i_p- k)(1- p)k+d(i_ + k)bs],
(55)

wpkl _ be = wpk2 bb4= -g-us, --g- s, (56)

(i_p - k)2(1- p)Aoblo = Ap pFr -1 + p(1 + p)k

p(iwp - k)(iw + k) 68]J
+ (1 - p)k - 2ia_p p(iwp - k)

l+p - (l+p)k us,
(57)

(iw + k)(1 - p)k - p(iwp - k)bs
bo = blo - 1 +

(1 + p)(iw - k)k
(58)

Substitution of these results into Eq. (51) then gives

a single implicit equation for i_ given by

52 _ ,

[c(p,_s - 1) + 1 - p]b_o

1-p [iw+k, ]1 + p [_:-_tp - k - 1) - (1+ _+ ep)i_ - k

p [iwp- k, ]+ (1_p)kLi-Uz--K-k_p-k-I)- (i_p-k)_b8

= 1 - p + i_[1 + _(1- p)],
(59)

where bs(iw) and blo(ica) are given explicitly by Eqs.

(53) and (57), provided Ao ¢ 0. Equation (59) is

thus the dispersion relation that determines the neu-

tral stability boundaries in that case. In the limit

Ao --* 0, the dispersion relation is given by setting

the right-hand side of Eq. (57) to zero, in which

case Eqs. (58) and (59), which are then decoupled

from Eqs. (53) - (57), determine b9 and bin. Al-

ternatively, we may solve Eq. (59) for bm(iw)"and

substitute this result into Eq. (57), which then be-

comes the dispersion relation for arbitrary Ao. We

remark that the special case Ao = 0 yields an an-

alytically tractable solution for the neutral stabil-

ity boundaries, 12 but since all other results to be

presented are obtained for the parameter regime de-

fined by Eqs. (52), we shall restrict ourselves to this

regime for this limiting case as well.

5. Hydrodynamic Stability Boundaries

in the Limit Ao = 0

In the limit Ao = 0, the results obtained from

the dispersion relation (57) in the parameter regime

(52) are as follows. 13 First (see Figure 1), the pul-

sating hydrodynamic stability boundary is given, to

leading order in e, by A_ = -p* for all disturbance

wavenumbers [the exact relation is given by A; =

-p*/(1 - ep*)], with instability occurring below this
critical value. For the cellular stability boundary,

the corresponding leading-order expression depends

on the magnitude of the wavenumber k. In partic-

ular, there are three wavenumber scales to be con-

sidered; the O(1), or outer, scale k, a far outer scale

k! = ke, and an inner scale defined by either ki =

k/e if Fr -1 ._ O(1) or k_ = k/e 2 if Fr -1 N O(e).

In each of these regions, the cellular stability bound-

ary, on which the complex frequency iw is identically

zero, is given by

A; ~ A;_°_ _ *...-_p, (60)

. ,_ A.p(l) 1 .Av ,_ _p (p* Tk! - 1), (61)

and

f o'(p*g - k,)/2k,, F_-_ ~ o(1)
A_ (oA_

p*(p*g* " k,)/2k,, Fr -1 ,._ O(e),
(62)

respectively. Matching the above solutions to one

another, a uniformly valid composite expansion, de-

noted by A_(C)(k), can be constructed in the region

Ap < 0 (the basic solution can be shown to be un-



stablefor Ap > 0). In particular,

A;(c)~ A;(')+ A;(°)+
- lira A *(0- lim A_ (I)

ki -'*oo r k $ .--*O

1 .2
,_ -2p* + _eP ")'_

(p*2g/2k, Er -1 ,._ O(1)

+ _e2p*2g*/2k, Fr -1 _ O(e),

(63)

where the definitions of k_ and k I have been used

to express the final result in terms of k. We note
that this asymptotic result, exhibited in Figure 1,

is far simpler than the exact result, 12 which, in our

present notation, is given in the region A_ < 0 by

A;/p* =

p*((1 - p* e)Fr -t + p*e'_k 2 - (1 - p* e)k

p*2e2(3-p*()Fr -1 + p*2e2_k2 + (1-p*eX2-p*()k
(64)

It is thus easily seen from Figure 1 that there

is a stable region between the pulsating and cellu-

lar stability boundaries for Ae = 0, and this re-

sult is preserved (in fact, enhanced) when viscous

effects, which play a stabilizing role with respect
to both boundaries for sufficiently large wavenum-

bets, are included in the analysis. 13J4 We observe

that for the Landau (cellular) form of hydrodynamic

instability, gravity and surface tension are stabiliz-

ing with respect to sufficiently small and sufficiently

large wavenumber disturbances, respectively. The
essential difference, as illustrated in Figure 1, be-

tween the normal and reduced _avity limits in the

realistic parameter re, me considered here is that in

the latter instance, gravity is only capable of sta-

bi4izing disturbances whose wavenumbers are very

small, O(e_), whereas in the former case, gravity

is sufficiently strong to stabilize disturbances whose

wavenumbers are O((). As a consequence, hydro-

dynamic instability becomes a long-wave instability

phenomenon in the reduced gravity regime consid-
ered here, since, from Eq. (63), the most unstable

wavenumbers are O(v_), rather than O(1), in that

case. We remark that although positive values of the

pressure sensitivity Ap are hydrodynamically unsta-

ble, zero and negative values of Ap over certain pres-
sure ranges are, in fact, characteristic of the so-called

"plateau" and "mesa" types of solid propellants, 17
as well as for the HAN-based liquid propellants men-

tioned above. 15
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Figure 1. Inviscid hydrodynamic stability boundaries

in the limit of zero thermal coupling (.4o = 0).

6. Hydrodynamic Stability Boundaries for Ao > 0

Retaining the parameter scalings introduced in

Section 3, we first consider the O(1) wavenumber

regime. For the case Ae = 0 considered previously,
it turns out 14 that the appropriate expansion of the

dispersion relation i_(k) is of the form

iuJ ,'- e-I/2(icd0 + (1/4iWl + (1/2io_2 +"" ), (65)

where the leading-order term was suggested by the

explicit results available for the inviscid case, and

the expansion in quarter powers of e is suggested

by the leading-order term in the resulting expansion

for p given below. We now introduce the scaling

Ao = e_A_, where the value of n _ 0 is to be deter-

mined so as to give a nontrivial modification in the

dispersion relation at the appropriate order, corre-

sponding to the first effects of a nonzero temperature

sensitivity on the neutral stability boundary for O (1)

wavenumbers.



SubstitutingEq. (65)andthevariousscalings
intoEqs.(37),(40)and(53),expandedformsforp,
s and bs are obtained as

p_poe-W4+pl+p2eW4+ .-. , s_..O(eW2), (66)

58 ,-,a

where

(iw°)2P* + k2 k2p'k _-i_ (_o0)(_1)-3/4 .
1

2k [(iw_) + 2(iw0)(iw_)] e-1/2 +...,

(67)

1[ _/_ ]Po=(iwo) 1/2, Pl=_ iwl/(iwo) +I ,

p_ = {(i.,o) -1/_ [1+ 4k_ + 4i_ - (i_1)2/i_o].
(6s)

Consequently, from Eqs. (57) and (67), bl0 has the
expanded form

bl0 "_

_.--_ + [(i_o)2p• - ak_]_,/_+...A5 5g

_-n { % p.+ _ - 2k [(iw°)2P* - k2] - -'k (iw°)(iwl)el/4

p* [iwo+ _t k {(i_°)_P'-3k_}

+...}
"_e -n b +°10g +_'10 _

(69)
which, when substituted into the dispersion relation

(59) along with the other expansions deduced thus

far, yields a sequence of equations for the deter-

mination of the coefficients in the expansion (65).
Thus, at leading order, O(e-n-1/4), Eq. (59) yields

b(o) = 0, which, from the implied definition of _(0)10 °10

in Eq. (69) above, gives

.k 1

App. 2k [(iw°)2P* - k2] = 0, (70a)

or

(iw0) 2 = (2A; + p*) . (70b)

Hence, iwo is identically zero for A_ = -p*/2, which
corresponds to the leading-order hydrodynamic cel-

lular boundary (60) in the O(1) wavenumber regime

when A_ = 0. Values of Ap > -p*/2 imply cel-
lular instability, since in that case there exists, ac-

cording to Eq. (70b), a root of the dispersion re-

lation such that Tge{iwo} > O, Zm{iwo} = 0. On

the other hand, the stability of the region A_ <
-p*/2 is still indeterminate, since Eq. (70b) in-

dicates that T_e{iw0} = 0 there. Hence, the next
nontrivial term in the expansion of iw is required to

determine whether this region is stable or unstable,

although the fact that Zrn{iwo} _ 0 implies that

disturbances have a pulsating character for values of

A; below the cellular stability boundary.

At the next order, O(e-n), in the analysis of

the dispersion relation, the equation h(1) : 0 is ob--_'10

tained, whence the definition of _loa(1)in Eq. (69) im-

plies that iwl = 0. Proceeding with the next higher

order equation obtained at O(e -n+W4) from the ex-

panded version of Eq. (59), it can be seen that terms

other than those proportional to A_ -1 will appear

provided the choice n = 1/4 is made. In that case,

collecting terms of O(e °) and using the previous re-

do) I"(1) = 0 leads to the equationsuits ulO = _10

_ d2) 2-_-_o_o + 2k - [(iwo?p" + k_]= O, (71a)

L(2) maywhich, upon using the definitions of p0 and uxo,
be solved for it.O 2 aS

io) 2 =

1

[(iwo)2p * - 3k 2] [A; + p" + kA;(iwo) -3/2]2p*k
k

= p--_ (A; - p*)

-[A; + p" + p*3/2k-l/2A; (2A; + p.)-3/4] ,

(Tab)
where the expression (70b) for iwo has been used

to obtain the final equality. It is readily seen that

for A_ = 0, _e{iw2} = 0 for Ap = -p* < -p*/2.
.That is, as described in the previous section, there

exists, since Zm{iw} # 0, a pulsating neutral sta-
bility boundary that lies below the cellular bound-

ary such that the region between the two, namely

-p*/2 < A; < -p*, is stable [_e{iw2} < 0], and
the region below the pulsating boundary is unstable

[_e(i,,,_}> 0].
For A_ > 0, the pulsating boundary is modi-

fied. In particular, in the region A; < -p*/2 be-
low the cellular boundary, the principal value of the

complex factor in Eq. (71b) may be expressed as

(2A; + p.)-a/4 [-(2A; + p*)]-3/4 e_3i_/4, and

thus the neutral stability condition _e{iw2} = 0 is
given by

A;+p*-lv'_p'3/2k-W2A; [-(2A; + p.)]-3/4 = 0.

(Tz)



Writing A_ = -p* + 5p*/2, where 5 represents the
deviation, in units of p*/2, in the pulsating sta-

bility boundary from its value in the zero-thermal-

sensitivity limit A_ = 0, the condition (72) becomes

_ v_p.-1/4k-1/2A_(1 _ _)-3/4 = O, or equiva-

lently,

&4(1 - a) 3 = 4p*-lk-2A_ 4 . (73a)

Equation (73a) is an implicit expression for the pul-

sating stability boundary _(k), where the value 5 =

1 corresponds to the cellular boundary and _ = 0 is

the pulsating boundary for A_ = 0. Alternatively,

writing A; = (-p*/2)(1 + b), where b = 1 - _ is the

negative deviation, in units of p*/2, from the cellu-

lar stability boundary Ap -p*/2, Eq. (73a) can
be rewritten in terms of b as

b3(1 - b) 4 = 4p*-lk-2A54 , (73b)

where /_ = 1 (/_ = 0) corresponds to the pulsating

(cellular) boundary in the limit A_ = 0. A plot

of k(b) for several different values of A_ is shown in

Figure 2, which, when rotated -90 ° so that the k-axis
is horizontal, is readily interpreted in the context

$ *

of Figure 1, the lines Ap = -p*/2 and Ap = -p*

in that figure corresponding to b = 0 and b = 1,

respectively, in Figure 2.

Referring to Figure 2, it is seen that for A_ >

0, the pulsating boundary becomes C-shaped (in

the rotated frame of reference), the upper branch

approaching the cellular boundary b = 0 as k

oo, and the lower branch approaching the original

(A_ = 0) pulsating boundary/_ = 1. These same

limits are approached for any fixed value of k as

A_ _ 0. The portion within the C-shaped curve
is the stable region, and thus not only is steady,

planar burning intrinsically unstable for sufficiently

small wavenumbers, but, for finite values of k, any

crossing of the C-shaped boundary from the stable

to the unstable region corresponds to the onset of

a pulsating instability. As A_ increases, the turn-
ing point of the C-shaped pulsating boundary, which

occurs at/_ =/_e = 3/7 (i.e., at Ap = -5p*/7) cor-

responding to the critical wavenumber k = kc =
(343/72)(21/p*)1/2A_ 2 _ 21.83 A_2/p *1/2, shifts to

larger values of k as A_ increases. On the other

hand, as A_ becomes small, the turning point shifts
to small values of k such that kc eventually leaves

the O(1) wavenumber region for which Eqs. (73)

are valid. Thus, as A_ becomes small, the original
pulsating and cellular boundaries are recovered in

the O(1) wavenumber regime, but as A_ becomes
large, the original cellular boundary lies within the

unstable region for O(1) wavenumbers, and the basic

solution becomes intrinsically unstable to oscillatory
disturbances.*
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Figure 2. Pulsating hydrodynamic stability bound-
aries for k _ 0(1) and Ao " O(el/4).

A composite asymptotic solution for the neu-
tral stability boundary in the regime Ao "-, O(e 1/4)

is thus obtained by matching the cellular and pulsat-

ing boundaries in the far outer wavenumber regime,
where the former is given by Eq. (61) and the latter

is given trivially by A_ = -p*, with the appropriate
solution branch of Eq. (72) in the O(1) wavenum-

ber region. In particular, we denote the two so-

*These results correct an erroneous conclusion drawn

in a previous study, 12 where an algebraic error in a

similar, but less formal, calculation incorrectly sug-

gested that the pulsating boundary recedes (to more

negative values of A_) as A_ increases, leaving the

cellular boundary unaffected.

I0



lutionbranchesof Eq. (72),whichcorrespondto
theportionsof Figure2 that lieto theleft andto
therightof theminimumat/_= /_c, by A_(°'U)(k)

and A_(°'O(k), where the superscript "o" denotes,
as before, the outer, or O(1), wavenumber region

and the superscripts "u" and 'T' denote the up-

per and lower (rotate Figure 2 by -90 °) portions of

the double-valued pulsating boundary A_(k). These
branches are given implicitly by Eq. (73b), where,

by definition, b = -(2A_/p* + 1). Along the upper

branch, A; (°'u) ---* -p*/2 (i.e., b --* O) as k ---* co,
which can be matched with Eq. (61) since, from

Eq. (61), A_ U) ---, -p*/2 as kf --, O, Similarly,

A_ (°'l) --* -p* (i.e., [_--* 1) as k --* oo, which clearly

matches the pulsating boundary A_ = -p* in the
far outer wavenumber region. As a result, a leading-

order composite stability boundary spanning both

the outer and far outer wavenumber regions is given

by

,,. f Ap(°'_')(k) + ep*27k/2,
A_(k)

Ap > -5p*/7

Ap < -5p*/7,

(74)

Figure 3. Composite hydrodynamic stability bound-

ary for Ao " 0(el/4).

where the second term in the top expression has been

expressed in terms of the outer wavenumber variable

k. This composite boundary is shown in Figure 3.

We note, b_ed on the above construction, that the

lower branch of Eq. (74) is a pulsating boundary for
all wavenumbers, whereas the upper branch transi-

tions from a pulsating boundary for O(1) wavenum-
bets to a cellular boundary for O(e -1) wavenumbers.

Indeed, from Eq. (70b), we observe that in the outer

wavenumber regime, the size of the upper region of
oscillatory instability, which is bounded below by

the upper branch of the pulsating stability boundary

and above by the region of nonoscillatory instability

beyond the old cellular boundary A_ ,_ -p'/2 for
A_ = O, shrinks to zero as k becomes large.

7. Evolution of the Pulsating Boundary for A_ << 1

The nature of the evolution, as A_ decreases, of
the pulsating stability boundary depicted in Fibre

2 to that shown in Figure 1 for the case A_ = 0
may be determined by analyzing the dispersion re-

lation for smaller order-of-magnitude wavenumbers

and appropriately rescaled values of Ao. In par-

ticular, the results (70b) and (73b) suggest that if

we consider k --- O(@), then A_ .-, 0(@/2) and

i_0 "_ O(ea), where the latter imply that Ao and iw

A;
0.2

Composite Pulsating/Celhdar Stability Boundar),

A_ = .5, p* =7=1, _ = .005
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are O(e (2_+1)/4) and O(e(2a-1)/2), respectively. A

preliminary analysis then suggests that qualitative
deviations from the C-shaped "nature of the pulsating

boundary exhibited in Figure 2 occur for wavenum-
bers of order e 1/2, which is another intermediate
wavenumber scale that lies between the inner and

outer wavenumber regions that were defined in.the

previous section. The above analysis is thus re-

peated for k = f¢_1/2 and Ao = -_ee 1/2, the other

parameters remaining unchanged from their previ-

ously assumed orders of magnitude. Consequently,

in place of Eq. (65), a solution for the dispersion
relation is now sought in the form

iw ,_ io3o + el/4it_l + el/2io32 + "'" • (75)

Substituting Eq. (75) and the new scalings in-
troduced above into Eqs. (37), (40) and (53), the

new expanded forms of p, s and bs are given by

p ~/30 +/31_1/4+ _26/_ +... , s ~ o(_), (76)

bs _ (io3°)2P*'; q- _2 e -1/2 _ _-1(io3o)(io31)e_1/4
2p* k k

1 [(i_) + 2(i_o)(io3_)]_o+...
2k

(77)
where

_o = _ 1+ (io3o) 1/2 , /51= i_1(1+4io3o) -1/2,

/32 = _i_2(1 + 4io3o) -1/2 .

(78)
As a result, Eqs. (57) and (67) give the correspond-

ing expansion of bl0 as

bl0 ~

Ao 2-_ "(i°3°)2P* -

+ _{_1_ [(io3o)2.- f¢2]_ _:(i_o)(_o3_)6/4

+ 2-_P'[io3°k 3k'}{(io30)2p * - _ (io31) 2

- 2(i_0)(i_)]_'/_ +... }

_(0) _(1).1/4 _(2) 112
"'"10 + _I0 " +010 e + "'" •

(79)
Substituting these expansions into the dispersion re-
lation (59), one obtains from the leading O(e °) terms

in that equation the result £(0) = O, or, according tovlO

Eq. (79),

(i_o)_-= _ (2A; + p'). (80)

Comparing Eq. (80) with Eq. (70b), it is thus seen
that the same leading-order result is obtained for

id;0(f¢) for Ao _ O(e 1/2) as was obtained for iwo(k)

for Ao "_ O(el/a). In particular, i&0 is real and

positive for A; > -p*/2, and is pure imaginary for

A_ <_ -p*/2. Thus, the prediction of cellular insta-
bility is recovered in the former case, but stability

in the latter region can only be ascertained by cal-

culating the next nontrivial term in the expansion

(75).
Collecting terms of O(e 1/4) in the expanded ver-

sion of Eq. (59), it is concluded that _io_(1)= 0, which,

from Eq. (79), implies that i&l = 0. Proceeding to
the next order, we collect terms of O(e 1/2) in Eq.

(59), which gives rise to the nontrivial equation

_0_(_)(1- c -_0) + (_£+ p./,_0)) _+ _--_-o/ = 0
(81_)

where, from Eq. (77), b(s°) = -(io3o)(io32)/k. Upon

substituting the expressions for _10_'(_)and (iDo) 2 from

Eqs. (79) and (80), we obtain the expression for i_
as

r

k(A; - p*) [A; + p*
i&2

L

f_(2A; + p*) \ 1:_-c " _ ] J'

(81b)

where, from Eq. (80), io30 = (f_/p*)(2A; + p.)l/2 =

(k/p*)[- (2A; + p*)]'/2ei_/2, the second equality

denoting the principal root when A_ < -p*/2. The

expressions (81b) and (71b) for the two growth-rate
corrections i_32 and iw2 in their respective wavenum-

" ber regimes collapse to the same result in the limit of
zero thermal sensitivity, yielding the same pulsating

stability boundary Ap - -p* as before. However,

for nonzero .4_, the forms of these two results differ,

leading to qualitative differences in the correspond-

ing neutral stability boundaries. In particular, it will

be shown below that the pulsating neutral stability

boundary obtained from Eq. (81b) approaches that

shown in Figure 1 (i.e., A_ = -p*) in the limit of
zero thermal sensitivity, whereas it approaches the

form shown in Figure 2 as ,4_ becomes large. That

is, the evolution between these two limiting forms

occurs on the O(e 1/2) wavenumber scale for O(e t/_)

values of the thermal sensitivity parameter A_.

Setting the real part of/d_2 to zero, the equation

governing the (pulsating) neutral stability boundary

A_(f¢) in the present wavenumber regime is deter-

12



minedfromEq.(81b)as

Ap +p
^

k(2A; + p*) i----_c--_ = 0,

(82)
which, since id)0 depends on A_ and k, is a highly

nonlinear equation for Ap(k). Thus, in order to de-

termine the nature of the stability boundary as a
function of Ao, it is useful to consider certain lim-

iting cases. We first consider possible solutions of

Eq. (82) in the large (scaled) wavenumber regime

>> 1. In that limit, we observe from Eq. (70b)

that i&0 -,, O(k) >> 1, and thus a first approxima-

tion to Eq. (81) in this regime is given by

" -o
Ap + p* k(2A; + p*)

or, using the expression for the principal root i&0

given below Eq. (81b),

A;+p*-_I v/_p.s/2k_t/2Ae [-(2A; + p')] -3/4 ~ 0

(83b)
which, since k-1/2.4 e = (k/el/2)-U_(Ae/el/2) =

k-1/2(Ae/el/4) = k-W2A_, is identical to Eq. (72).

According to the discussion of Eq. (72) above, the

turning point in the corresponding neutral stability
boundary exhibited in Figure 2 occurs at the value

kc o¢ A_ 2. Thus, we conclude that Eq. (83b) is a

valid approximation for Eq. (82) in the large (scaled)

wavenumber regime ]¢>> 1 provided A_ >> 1, where

the latter is a necessary condition to insure that

is large everywhere along the stability boundary de-

scribed by Eq. (83b). For such values of Ae, the

pulsating stability boundary for large k approaches

that illustrated in Figure 2 (with k replaced by

and A_ replaced with Ae).

In addition to the boundary described by Eq.
(83b) and Figure 2 for large k and Ae, there is

another pulsating branch that is present for small

wavenumbers, as suggested by the observation that

there exists a solution of Eq. (82) such that A_

-p* as k -+ 0, irrespective of the magnitude of _ie.

To simplify the analysis and further discussion, we

mainly consider a simplified form of Eq. (82) by
restricting further consideration to the reasonable

limit in which the heat-capacity ratio c is small.

Since 1 + 2i_0 - x/1 + 4i_0 = (1 - v_ 4i_ )2/2, a

first approximation to Eq. (82) in that limit is given

by

Ap + p* + Aep*2 R.e, f 1} 0L + 4; o- ~ ,
C -'+ O,

(84)
which clearly gives the same limiting approximation
(83a) for large k. To analyze Eq. (84) for arbitrary

k, it is convenient to convert it to an alternative

form as follows. Writing I + 4iCuo in the polar form

1 + 4/_0 = rcos# + isin0, where r 2 = 1 + 16&_,
cosO = 1/r and sin0 = 4&0/r, Eq. (84) may be
rewritten as _: : :

2¢zo(Ap + P*) = _:-_.e 2 - 1 ,

(85)
where, from Eq. (80), &g = -(k/p*)2(2A; + ;*).
Substituting this expression for _02 into Eq. (85)
and rearranging/squaring the latter twice so as to

remove the fractional powers, a polynomial equation

for the inverse relation k(A_; Ae) is obtained as

4k _ (2A; + p')3 (A; + p*)4

_ 8_p.2 _o (2A; + p.)2 (A; + p.)3

+ k[hp"& (2A;+ p') (A;+
- p*°&(A;+p') = 0,

or, introducing/_ = -(2A_/p* + 1) as before,

+ _ [5A_/,(1- ,_)z_ 4A$/p*] + 2A_(1 - [_)= o.
(866)

An even more compact version is obtained by defin-
ing k = b(1 -/_)k/iie, giving the cubic equation

/_a+ 4_2 + (5- _)_ + 2 = o, (86c)

where e(b) = 4A2/[p*b(1 -/_)2]. However, since it

is the relation A_(k; Ao), or equivalently,fc(b; Ao),

that is ultimately desired, we shall mainly consider

the form given by E 9. (86b).
In the regime Ao >> 1 there exists a solution

--_O(A 2) as suggested above. More precisely, this

solution of Eq. (86b) may be sought in the form

~ A_(k0 + Ao'_ + AG% +--, ). (st)

whence, upon substitution of this expansion into Eq.
(86b), the coefficients _:, are determined recursively
as

ko = 2/_-a/2(1-$)-2/p*v_, i_ = _25-_(1_$)-,,
(88)
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andsoforth.Asexpected,theleading-orderapprox-
imation/__ A2k0 is identical in form to the result

(73b) and the next term in the above expansion thus

provides a negative correction to this result. On the
other hand, for large de there also exists a solution
/¢ << 1 of the form

/_ _ d_l(k0 + A_lkl + .4o2k2 +-.. ). (89)

Substituting the latter into Eq. (86b), the ki are

also determined recursively, the first few of which

are given as

k0 = p*(1-/9)/2, kl -- 0, k2 = 5P'2/9( 1-/9)3/8,

(90)

where the last of these provides, for 0 < /9 < 1, a

strictly positive correction to the leading-order ap-

proximation k _ (2Ae)-Ip*(1 -b). Although the

branches described by Eqs. (87) and (89) were ob-

tained for de >> 1, they remain reasonably accurate

representations of the actual branches even for O(1)

values of this parameter, as shown in Figures 4a,b

(discussed immediately below).

As .4e decreases through O(1) values, the turn-

ing point in the stability boundary for large I¢ occurs
for smaller values of 1¢,and eventually the expansion

for large k ceases to be a valid approximation of Eq.

(86b). Simultaneously, the branch corresponding to

small values of k reaches larger values of/¢ such that

the above expansion for small k ceases to be valid

as well. These two branches eventually intersect,

restoring a region of stability for a range of negative

values of A_. This development is illustrated in Fig-
ures 4a-f, which were obtained directly from the ex-

act roots of the cubic equation (86b) with respect to

/_ [for comparison, we also indicate the asymptotic
representation for the upper branch corresponding

to one- and two-term truncations of Eq. (87)]. We
observe that after the two pulsating branches inter-

sect (as, for example, in Figures 4c-e), there exist

two critical values of/¢ corresponding to the onset of

pulsating instability at corresponding critical values

of/9, or equivalently, A_. That is, in this range of
temperature sensitivities, a pulsating hydrodynamic

instability occurs for either sufficiently small or suf-

ficiently large negative values of A_ as either the left
or right (upper or lower in the rotated frame of refer-
ence) stability boundary is crossed: As Ae decreases

further, the separated branches move further apart

until ultimately, in the limit de _ 0, we recover

from Eqs. (86) the two roots b = 0 and/9 = 1 corre-

sponding to the cellular (A_ = -p*/2) and pulsat-
ing (A_ = -p*) stability boundaries in the present

[k .-, O(el/2)] wavenumber regime. Thus, as the

temperature-sensitivity parameter Ae decreases to

small values on the scale Ae/Ap .._ O(e -1/2) .-- 50,

the region of hydrodynamic stability depicted in Fig-
ure 1 is recovered.

Pulsating Stability Boundary

f /_o --"I
4O

35

'10

25

2O

15

/ /
i /
i s,ab, /
\ /

f

10

unstable

b
0.2 0.4 0.6 0.8 1

Figure 4a

Figures 4a-f. Pulsating hydrodynamic stability

boundaries for k = ice1/2 .._ O(e 112) and decreas-

ing values of Ao = Aoe 1/2 "_ O(el/2). The broken

curves denote one- and two-term asymptotic expan-

sions of the upper boundary for de >> 1, ]¢ >> 1.

(a) 4o = 1; Ao = 2/3; (e) do = 3/5; (d)
Ao = 1/2; (e) Ao = 1/4; (f) Ae = 1/16.

14



k
4O

|

I
25

_° /
|

\

i0

5

\

\

0.2

Pulsating Stabili_ Bounda_.

•2to = 2/3

/
I
e

/
stable /

/
/

/
• •

unslable

stable

0.4 0.6

Figure 4b

i-

40[
t

r

35_

3o

25

20

I5

lo

h ]

Pulsathtg Stabili_. Bounda O,

;t_ = 3/5

/
/

/ /

\, /./
\

0,2 0.4 0.6

Figure 4c

0.8

i

h

15



40

P.lsating Stability Bour,dary

•_o = 1/2

35

3o

Figure 4d

4O

35

3O

25

2O

15

1°/

5

Pulsating Stabili_. Boundat3.'

•_o = 1/4

/

0.8

Figure 4e

16



40

Pulsatit,g Stability Boundary

_,_ = 1/16

35

3o

25

2o

15

10

h
0.2 0.4 0.6 0.8 1

Figure 4f

stable

8. Viscous Effects

The above analysis for nonzero Ae _ O(e 1/4)

may be extended to include the effects of viscosity. 19

Adopting the reasonable scaiings Prl = P "_ 0(1)

and # = #*_ ,_ O(1) for the liquid-phase Prandtl

number and the gas-to-liquid viscosity ratio, it was

previously shown that modifications to the hydro-

dynamic cellular stability boundary occur, to a first

approximation, only in the far outer wavenumber

regime k ,_ O(e-1), while the leading-order modi-
fications to the pulsating boundary first occur for

O(1) wavenumbers, 13,14 Although these results were
obtained by neglecting the thermal coupling ana-

lyzed above for the inviscid problem, the same quMi-

tative order-of-magnitude effects remain valid for the

present case in which Ae > 0. Similarly, just as it
was determined above for the inviscid problem that

the effects of thermal coupling are felt in the O(1)

wavenumber regime for Ae = A_ 1/4 _ O(_l/l), a
similar result is obtained in the viscous case. Thus,

adopting these scalings, we again seek the neutral

stability boundary in the O(1) wavenmnber regime,
anticipating that the primary differences from the

inviscid analysis presented above will occur on the

right-hand portion of the stability boundaries ex-

hibited in Figure 2. In particular, the dispersion

relation iw(k) is sought in the form (65); i.e., as
iw 0 "_ e-1/2(iw0 -F iwl el�4 q- iw2e 1/2 + "'" ). How-

ever the added algebraic complexity caused by the
inclusion of the various viscous terms leads us to in-

troduce corresponding expansions for the coefficients

bi appearing in Eqs. (41) - (51) directly. 13'14
The details of the corresponding analysis are

described elsewhere, 19 but the main result that is

obtained is that the expression for iwo is unchanged

from the inviscid result (70b), and that iwl is again

zero. In place of Eq. (71b) for iw2, however, we

obtain the modified expression

k

iw_ = -2Pk 2 + --7 (A; - p*)

• [A; + p* + p*3/2k-'/2A_ (2A; + p.)-u/a] ,

(91)

leading to an implicit equation for the viscous pul-

sating stability boundary A_(k) given by

k [(3 + b)(1 -b) + 8Pk] 2 = 2A;2/v/_(3 +/_)'__3/2
(92)

where /_ = -(2A_/p* + 1) as before. In the limit
P --, 0, Eq. (92) collapses to the result (73b).

Equation (73b) may be transformed to a cu-

bic equation for k(b), the single real root of which

determines the stability boundary. Typical results

are shown in Figure 5, where, in comparison with

the corresponding inviscid plot shown in Figure 2,
it is seen that the main qualitative difference lies

in the asymptote of the right portion of the bound-

ary. In particular, that asymptote is no longer given
simply by b = 1, or equivalently, by A_ = -p*,

but by Ap = -p*(1 + 2Pk) 1/2, which is the viscous
pulsating boundary in the limit of zero temperature
sensitivity. 14

The pulsating stability boundary (92) may be
matched to the far outer viscous cellular boundary as

shown above for the inviscid case, leading to a com-

posite expansion spanning the outer and far outer
wavenumber regions. This is exhibited in Figure 6,
from which we conclude that viscous effects serve to

widen the stable region for wavenumbers bounded

away from zero, but do not eliminate the intrinsic

pulsating instability that exists for sufficiently small
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Figure 5. Pulsating hydrodynamic stability bound-
aries for k _ O(1) and Ao " O(el/4).

Figure 6. Composite hydrodynamic stability bound-

ary for Ae ".. O(el/4).

wavenumber disturbances. As in the inviscid case

(Section 7), the transition from the composite hydro-

dynamic boundary in Figure 6 to the corresponding

pulsating and cellular stability boundaries that de-
scribe the temperature-insensitive limit occurs in the

regime Ae "_ O(¢ 1/2) for wavenumbers k _ O(e) 1/2.

9. Summary

The present work has continued a series of for-

mal asymptotic treatments of hydrodynamic insta-

bility in liquid-propellant combustion based on a

generalized Landau/Levich model that allows for a

dynamic dependence of the burning rate on local

pressure and temperature perturbations. The focus

in the present study was on the effects of thermal

coupling, represented by nonzero values of an ap-

propriately defined temperature-sensitivity parame-
ter Ao, on the nature of a pulsating stability bound-

ary that exists for negative values of a correspond-

ing pressure-sensitivity parameter Ap. Again ex-
ploiting the smallness of the gas-to-liquid density

ratio p, which provides the underlying basis for the

asymptotic treatment of the stability problem, it was
shown that for sufficiently large values of Ao, the

pulsating boundary possesses a turning point that

renders steady, planar burning intrinsically unsta-
ble for sufficiently small wavenumber perturbations.

A;
Composite Pulsating/Celhdar Stability Boundary

A_ =.5, p" = y =/.t" = I, P=.OI, _=.005
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As this parameterdecreases,thestableregionre-
emergessuchthat in the limit that Ao vanishes,

the original separated pulsatifig and cellular stabil-

ity branches are recovered. The evolution of the pul-

sating boundary between these two structures was
shown to occur on an intermediate wavenumber scale

relative to the inner, outer and far outer wavenum-

bar scales that emerge in the asymptotic limit of
small density ratios in the absence of thermal cou-

pling. Values of the ratio Ae/Ap over which this
evolution occurs were shown to be roughly of the or-

der of the overall activation energy, suggesting that

a pulsating, rather than the classical Landau (cel-

lular), form of hydrodynamic instability may be the

more likely manifestation of hydrodynamic instabil-
ity in at least some types of liquid propellants.
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